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Optimal Error Properties of Finite Element Methods 
for Second Order Elliptic Dirichlet Problems 

By Arthur G. Werschulz 

Abstract. We use the informational approach of Traub and Wozniakowski [9] to study the 
variational form of the second order elliptic Dirichlet problem Lu = f on Q C RN. For 
f G HW(Q), where r - -1, a quasi-uniform finite element method using n linear functionals 

fs f4, has H'(Q)-norm error J(n (r+ 1)/N). We prove that it is asymptotically optimal among 
all methods using any information consisting of any n linear functionals. An analogous result 
holds if L is of order 2m: if f G Hr(Q), where r - -m, then there is a finite element method 
whose Ha(Q)-norm error is n( (2m+r-a)/N) for 0 < a < m, and this is asymptotically 
optimal; thus, the optimal error improves as m increases. If the integrals f12 f4, are approxi- 
mated by using n evaluations of f, then there is a finite element method with quadrature with 
H'(Q)-norm error 0(n-r/N) where r > N/2. We show that when N = 1, there is no method 
using n function evaluations whose error is better than Q(n - r); thus for N = 1, the finite 
element method with quadrature is asymptotically optimal among all methods using n 
evaluations of f. 

1. Introduction. This paper deals with the optimal solution of second order elliptic 
partial differential equations. We wish to consider the variational form of the 
problem 

(1.1) Lu=f in CRN, u = O on K2, 

(see Section 2). Suppose that we evaluate information of the form 

(1.2) HI - - , f 4n - 

If f e Hr(t2), where r > -1, there exists a finite element method using (1.2) whose 
error is O(n-(r+ 1)/N) when measured in the H'(Q2) norm. 

We first wish to answer two questions. First, is there another method using the 
information (1.2) whose error is better than that of this finite element method? 
Second, is the information (1.2) the best possible information using n linear 
functionals? That is, is there another set of n linear functionals such that the best 
algorithm using this new information is better than the best algorithm using (1.2)? In 
Section 3, we asymptotically answer these questions in the negative. Thus,this finite 
element method is of asymptotically optimal error among all algorithms, linear or 
nonlinear, using any n linear functionals whatsoever. 

We also report some results on 2mth order elliptic problems which indicate that 
as m increases, the same number of evaluations yields smaller Hm(i2) error. 
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Although this is true, the cost of constructing an approximation of given accuracy 
increases with m. In addition, we consider the case where the error is measured by 
other Sobolev norms. 

In many cases, the information (1.2) is not available. Then JQ f4i is approximated 
via a quadrature rule using function evaluations. Thus, instead of using the "optimal" 
information of size n, we use the standard information 

(1.3) {f(xl),.. *f(Xn). , 

of size n. Iff E Hr(S2), r > N/2, there exists a finite element method with quadra- 
ture using (1.2) with x' = x** whose error is O(n-r/N). 

We now pose two additional questions. First, is there another method using 
{f(xr*),... ,f(x**)} whose error is better than this finite element method with 
quadrature? Second, is there a choice of xi in (1.3) which yields better error than the 
choice xi x**? In Section 4, we asymptotically answer these questions in the 
negative for the case N= 1. That is, the finite element method with quadrature is 
asymptotically of optimal error among all algorithms using information of the form 
(1.3), and the choice xi x** is asymptotically optimal. Since we have this negative 
result for a particular value of N, there is no way of improving the error behavior for 
all N. 

In what follows, we use the S2 and e notations, as well as the more commonly used 
O and o notations. We say that f(n) = Q(g(n)) if g(n) =O( f(n)), and f(n) = 
e(g(n)) if f(n) =O(g(n)) and f(n) = Q(g(n)). 

2. The Variational Dirichlet Problem. In what follows, we use the standard 
notation for Sobolev spaces, norms, etc., found in Ciarlet [3]. Let &? be a C' region 
in RN, and let A: S2 -- RNXN and q: a2 - RN be given C? mappings. We assume that 
A is uniformly positive definite, i.e., A is symmetric and there exists y > 0 such that 

(2.1) (TA(X) -> yT% Vt E RN, Vx E U. 

We also assume that q(x) 2 0 for x E U. 
We define a bilinear form B: HO(9) X Ho(Q) -- R by 

(2.2) B(v, w) :- [(AV V)TV W + qvw]. 

Recall that H- '() is the completion of C?(S) under the norm 

(2.3) ||g|-1 := sup fa O 

4,C-H'(Q7) 

see pp. 18 ff. of Babu'ska and Aziz [2]. 
Then the variational Dirichlet problem is defined as follows. Let r > -1. For a 

givenf E Hr(9), find u = Sf E HO(9) satisfying 

(2.4) B(u, v) = (f, v) :- f fv Vv E Ho(0). 

Using the assumptions on A and q, the Lax-Milgram theorem implies that S: 
Hr(Q) -* Hog(&) is a bounded linear operator, and is a Hilbert space isomorphism of 
H-'(9) onto Ho(s2). 
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For future reference, we recall the "shift theorem" (see Chapter 3 of Babuska and 
Aziz [2]) which states that since f E H'(Si), Sf E Ho(u) n Hr+2(E2); moreover, 
there is a positive constant a, independent of f, for which 

(2.5) a 'IISf 11 r+2 S 11 f 11 r I ( 11 Sf 11 r+2- 

If r > N/2, then the shift theorem and the Sobolev embedding theorem yield that 
the solution u = Sf to the variational Dirichlet problem will be the solution to the 
classical Dirichlet problem, that is, 

(2.6) -div(Av u) + qu = f in i2 

and 

(2.7) u = O on K2. 

3. Asymptotically Optimal Error Algorithms Using General Information. We first 
consider a class of finite element methods for the problem (2.4). For further details, 
see Babuska and Aziz [2] or Ciarlet [3]. These methods have the property that their 
explicit dependence on f in (2.4) is actually through the information 

(3.1) 6*f f= [(f, 4n) ... ( tan)] T 

where the functions 4in: C2 -- R will be defined below. 
Given r as in Section 2, we define the integer k by 

(3.2) k :=[r + 1, 
and let {5h}h>O be a quasi-uniform family of finite element subspaces of Ho(Q) of 
degree k. That is, there is a quasi-uniform family {Oh}h>O of triangulations of i2 such 
that Vh E Sh if and only if Vh is continuous, Vh vanishes on agi, and Vh IE e 6yk for 
each subregion E of 3h. Here, 

(3.3) 6k span{x * ... xON: ai 
- 0 integer, a < k}. 

(Of course, since we have assumed that 2 is C?, we must make an additional 
assumption about the boundary elements to guarantee that Sh C Ho(Q); for exam- 
ple, we may use curved elements as in [4].) Let 

(3.4) n =n(h) := dim Sh' 

We choose the degrees of freedom of the finite element space to consist of function 
values at a set pn,... ,pnn E f2 of nodes. Then any vh E Sh may be written uniquely as 

n 

(3.5) vh(x) =2 Vh^(Pj0)+n(X), 
j=l 

where the basis functions 1,. 
n n4 are chosen so that 4,on( pi) = 3i, so that they 

have "small" support. The quasi-uniformity implies that there exists C > 0 for which 

(3.6) h < Cn-I/N. 

We briefly recall the approximation properties of the finite element space. Let 
v e Hr?2(Q). We then define the Sh-projection Phv of v by 

(3.7) liv - Phv I = inf liv - VhlI. 
Vh E Sh 
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Then there is a C > 0, independent of v and h, such that 

(3.8) |V - PhVIII < Chr?||VII|r+2. 

The finite element method qg,* is defined as follows. Given f E Hr(i2), define 
UZ EE h for h > 0 by 

(3.9) B(u,h Vh) (f,Vh) VVh E Sh 

Writing 
n 

(3.10) uh(x) = ( 
j=1 

we see that u = [u, uIT is the solution to 

(3.11) Ku = b, 

where the entries Ki and bi of the matrix K and the vector b are, respectively, given 
by 

(3.12) Ki = B bi(f,4) 

Since the dependence of u* on f is only through the information (3.1), the finite 
element method 

(3.13) (Pn*(Dn*f ) Uh* 

where n = dim Sn is well defined. 
We now consider the error of the finite element method. Since (2.4) and (3.9) yield 

(3.14) IIu - U* |1 < C inf IIU - VhlIl = CIIU - PhUI I 
Vh E Sh 

(for positive C independent of u and h), we may use (2.5) and (3.8) to find that there 
is a C > 0 for which 

(3.15) IIu - Uh < Chr+lIIfIr 

So (3.6) yields a positive /8, independent of n andf, for which 

(3.16) ||Sf- )n (9nf)1k1 = ||U - Uh111 <3fln-(r+l)/NIIf 11 

We are now ready to consider the two main problems of this section. 
(i) Is there any other "algorithm" (method) using the information (3.1) whose 

error behavior is better than that of the finite element method? 
(ii) Is there another choice of "information" using n linear functionals of f which is 

better than the information (3.1)? That is, is there an algorithm using this other 
information and having better error than the best algorithm using (3.1)? 

In order to answer these questions, we must specify our intuitive ideas of 
"algorithm" and "information" more precisely. We use the notions and results found 
in Part A of Traub and Wozniakowski [9], hereafter referred to as "Part A." 

By information of cardinality n, we mean a linear operator 

(3.17) 6t: Hr(E2) -* 

such that 

(3.18) 6f = [Llf ... Lnf T 
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for some linear functionals L L...,Ln on Hr(Q2). Clearly the information 9Zj* given 
by (3.1) is of cardinality n. 

Let C0 be the unit ball of Hr(i2), i.e., 

(3.19) 6? = BH r(S) :{ f E Hr(S?): 11 f r r < 1} 

An algorithm q9 using the information 9Z is a (not-necessarily linear) operator p: 

DL(IYO) - Ho(Q). This means that q9 approximates Sf for f E J0 by using only the 

information D9f. 
The (worst-case) error of an algorithm q9 using Dt is defined to be 

(3.20) e(q) := sup ||Sf-q-(t)j(1. 
f1e6 

Results from Chapters 2 and 3 of Part A yield 

(3.21) infe(g) = r(9t, S, No) sup IISzll, 
z zEker9lCn 

where the infimum is over all q9 using 9Z and r(9t, S, %0) is called the radius of 
information. We say that q9 is an optimal error algorithm using Dt if q9 uses 9Z and 

(3.22) e(Tp) = r(Dt, S, 6R0). 

Our second task is to determine, for each positive integer n, the most "relevant" 
information of cardinality n. Define the n th minimal radius of information by 

(3.23) r(n, S, 63-) := inf r('L, S, S0), 

where the infimum is over all DZ of cardinality n. Then Dt of cardinality n is an nth 
optimal information if 

(3.24) r(6X, S, OTO) = r(n, S, 0Y). 

Recall that for a balanced subset X of a Hilbert space H, the Kolmogorov n-width 
dn( X, H) is defined to be 

(3.25) dn(X, H) := inf sup inf Ix - y1H 
An xEIX yEAn 

where An is a subspace of H with dimension at most n. Using results from Chapters 
2 and 3 of Part A, it is easy to see that 

(3.26) r(n, S, 'JY0) = dn(S(%), HO(2))* 
(This may also be viewed as a consequence of the equality of the Kolmogorov and 
Gelfand n-widths in a reflexive Banach space.) 

We are now ready to prove the main result of this section. 

THEOREM 3.1. Let i0 be the unit ball of Hr(i2), r 2 -1. Then the following hold: 
(i) r(n, S, 90) = E(n-(r+ ?)/N) as n -oo. 

(ii) The information 91* given by (3.1) is an nth asymptotically optimal information 
(i.e., optimal to within a constant factor), and 

r(9L*, S, 6J-) = 
Ei)(n-('+ 

I)/N as n -->oo. 

(iii) The finite element method qp* given by (3.13) is an asymptotically optimal 
algorithm using '* and 
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Proof. Let 

(3.27) X:= { u E H0 12( ) iIUIIr+2 - 

where a is from (2.5). We claim that 

(3.28) x c S(6). 

Indeed, let u E X. Since r > -1, u E Ho2(l) n Hr+2( 2), and there exists a unique 
f E Hr(g) such that Sf = u. Moreover, 

(3.29) IIUIIr+2 s ai, 

so that the shift theorem (2.5) yields 

(3.30) 11 f 11 r Sf 11 r+2 < 1 

i.e., f E 6J0. Thus u = Sf E S(630), i.e., (3.28) holds as claimed. Since for any Hilbert 
space H and any balanced subsets X and Y of H we have 

(3.31) X C Y X* dn( X, H) < dn(Y, H), 

we see that (3.28) implies 

(3.32) d '(S(S) Ho( )) > dn(X, Ho(02)) (-l'd( BH 2(), Ha( )). 

Using a proof analogous to that of Theorem 2.5.1 of Babuska and Aziz [2], there is a 
positive constant C, independent of n, such that 

(3.33) dn(BHor2S) HoS) > C[n(BHo() L2(S3 

Jerome [5], [6] uses a result on pp. 250-251 of Agmon [1] to show 

(3.34) dn(BHO(0), L2(02)) > (C'n) I/N(I + o(l)), 

where 

2N7TN/2r(l + N/2)' 

F denoting the gamma function. Thus (3.26), (3.32), (3.33), and (3.34) imply that 
there exists a positive constant a, independent of n, such that 

(3.36) r(n, S, 6%0) > aEn-(+I 

On the other hand, (3.13), (3.16), (3.19), and (3.20) imply that 

(33) e (n* ) < fn-(r )/ 

The theorem follows from (3.36) and (3.37). C] 
Thus the finite element method using n evaluations of (f, 4 i) is (asymptotically) 

of optimal error among all algorithms using any information of cardinality n. 
Remark 3.1. Consider the case r = -1. Then 60 is the unit ball of H-1(a). Note 

that H- (12) is the largest space for which a solution in Ho'(Q) is guaranteed. 
However, there exists C > 0, independent of n, such that 

(3.38) r(n, S, BH-'(S2)) 2 C. 

Thus in the case where the problem data have only enough smoothness to guarantee 
that the solution operator S is well defined and bounded, the problem is not 
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convergent, in the sense that for no sequence {()J}n= of algorithms, with pn using 
any information of cardinality n, do we have 

(3.39) lim e(gn ) = 0- 
n - oo 

More generally, it may be shown that if C0 is the unit ball of a Hilbert space H which 
is embedded in H`'(S2), then the problem is convergent (in the sense that (3.39) 
holds for some sequence of algorithms) if and only if the embedding of H into 
H` (sa) is compact. O 

Remark 3.2. The information operator OL given by (3.9) is defined by n linear 
functionals which are given independent of the choice of problem datum f. It is 
possible to consider "adaptive" information operators for which the evaluation of 
the ith functional depends on the previous i - 1 evaluations. However, there is no 
advantage in doing this; when %0 is the unit ball of a Hilbert space, the nth minimal 
radius is the same. for nonadaptive information of the form (3.9) and for adaptive 
information. (See Section 2.7 of Part A.) O 

Remark 3.3. We generalize this problem by considering a 2mth order elliptic 
problem and measuring the error in the H'(92) norm (0 < a < m). Then for r 2 -m, 
a finite element algorithm using subspaces of Hom(g) which are piecewise polynomi- 
als of degree Fri + 2m - 1 is asymptotically optimal, and 

(3.40) r(n, S, BHr(U1)) - 
3(n-(2m+r-a)/N) as n -* oQ. 

This holds because the shift theorem for a 2mth order elliptic operator takes the 
form 

(3.41) aVIf 11fIr< IISf 1r+2ma<I11f I1r Vf EHr(Q). 

Hence the asymptotic error improves whenever a decreases, m increases, N de- 
creases, or r increases. Dl 

Remark 3.4. For further information on optimal interpolation-error estimates and 
elliptic problems, the reader may wish to consult Schultz [7]. O 

We now consider the computational complexity of using the finite element 
method p,n* to find an --approximation to S, that is, of computing the value of 

qg*(X*f t) such that 

(3.42) e ( 'n*< 

By (iii) of Theorem 3.1, we must choose 

(3.43) n = n*(c) - 0(,_-N/(r+1)) 

in order to guarantee (3.42). The algorithm p* is linear, i.e., of the form 
n 

(3.44) (n(n X 2( 
n 

J)gi, 
i=l1 

where gi E Ho1(9) are independent of f. If one agrees to use preconditioning, i.e., to 
compute the gi in advance and not count the cost of this precomputation, then the 
computation of w,*(9L*Jf)(x) at any point x E t2 requires the computation of n inner 
products and 2n - 1 arithmetic operations. Assuming that the inner products can be 
computed in finite time, we conclude that the complexity of using the finite element 
method to compute an --approximation is 

(3.45) COMP(q*, ?) 
- 

(e-N/(r+l)) as e -* 0, 
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where n is given by (3.43). Since p,* is (to within a constant factor) an optimal error 
algorithm, it follows that 

(3.46) COMP(S, e) = inf comp(T, e) 

Thus the finite element method is (to within a constant factor) of optimal complex- 
ity. 

We wish to comment on the preconditioning assumption. In practice, such 
preconditioning is not often done. One reason is that for large n, the complexity of 
the precomputation may be prohibitively expensive, since it essentially amounts to 
computing the LU-factorization of the matrix K of (3.11), while not counting the 
cost of this factorization. Another reason is that one often wishes to fix f and let n 
increase (e.g., in Richardson extrapolation); in this case, one cannot take advantage 
of the linearity of (pn*. 

The computation of q* now requires the solution of the large sparse linear system 
(3.1 1). This is, in itself, an active area of research. However, for N = 1, the stiffness 
matrix K in (3.1 1) is a banded matrix whose bandwidth depends only on r, and not 
on n; this system can be solved in 0(n) operations, even if precomputing is not 
allowed. So for the case N = 1, the result (3.45) still holds, and the finite element 
method is still an asymptotically optimal-complexity algorithm. 

Remark 3.5. Similarly, one can show that if preconditioning is allowed, there is a 
finite element method for a 2mth order elliptic problem which computes an 
e-approximation in the H'(Q) norm (0 < a < m) with complexity 0(3(-N/(2m+r-a)), 

and that this is an asymptotically optimal-complexity algorithm for computing an 
c-approximation. Hence, the complexity decreases as m increases and a decreases. 
However, if one does not want to use preconditioning, this optimal complexity is no 
longer apparent, since the combinatory complexity increases with m. O 

4. Asymptotically Optimal Error Algorithms Using Standard Information. The 
asymptotically optimal algorithms q* described in the last section require the 
calculation of the inner products 

(4.1) (j< p1n)f= | nJ (I1jSn) 

forf E Hr(Q2). In practice, this is often accomplished by replacing the integral with a 
quadrature rule using function evaluations f(xi), xi E U. Recall that the Sobolev 
embedding theorem requires that r > N/2 in order for f(xi) to be defined for all 
f E H r(S). 

In this section, we use r from Section 2 to define an integer k by 

(4.2) k := [r]. 

Chapter 4.1 of [3] considers the use of a quadrature rule which is exact for piecewise 
polynomials of degree at most 2k - 2 to approximate the inner products occurring 
in a finite element method using a quasi-uniform family {Sh}h>o. Here Sh is a finite 
element subspace of Ho'(Q) of degree k; the degrees of freedom of Sh once again 
consist of function evaluations at nodes in S. Denoting the approximate solution 
thus produced by u**, Ciarlet [3] shows that there is a positive constant C, 
independent of u and h, such that 

(4.3) IIu - * Chrlli rll. 
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The dependence of u7** on f is only through the information 

(4.4) _X**f* fX**)] [ 

where 

(4.5) n = (0(dim Sh) - 

The finite element method with quadrature 

(4.6) Tn n h 

is well defined. Moreover, if we let 60 = BHr(S2) be the unit ball of H'(Q) (see 
(3.19)), then (3.20), (4.3), (4.6), and the quasi-uniformity of {(h}h>O imply that there 
exists a positive constant /B, independent of n, such that 

(4.7) e((pn**) < Aln /l' 

Note that this error bound is worse than the optimal error when using the 
information L*. This leads us to consider the main problems of this section. 

(i) Is there any other algorithm using G7** whose error is better than that of qn**? 
(ii) Is there another choice of the points x** in (4.4) which yields an optimal error 

algorithm with smaller error? 
We show that (i) and (ii) cannot be generally answered in the affirmative, by 

considering the case N 1. In this case, S1 becomes an open interval I on the real 
line. Defining, for x1, ... . xn e I, the standard information OLn by 

(4.8) fn f [f(xI) . f(Xn)] 

we have 

THEOREM 4.1. Let I be a real interval, and let 60 be the unit ball of Hr(J), r > 2. 

Then the following hold: 
(i) For any x ,. ..,xn eI, 

r(9Ln, S, No0) =2(nr) as n x oc. 

(ii) The points xi - xi* are asymptotically optimal, i.e., 

r(6LX*,, S 6J) - inf r(9, s(nr) as n xo. 

(iii) The finite element method with quadrature, qpn**, is an asymptotically optimal 
error using 6L**, and 

e(qgn**) 
= O(nr) as n -x o. O 

Proof. Since S is a Hilbert space isomorphism of H-'(I) onto Ho(0), and 
Hr(I) H- '(I), there is a positive constant C such that 

(4-9) |Sllsl 2 Cllzll-l Vz EE H r(I). 

Using (2.3) and choosing E E H'(I) to be the constant function {(x) _ 1, we see 
that 

(4.10) ||zii-l tIr' l/2 |zl Vz EE H r02) 
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I I denoting the length of I. Let x1,... ,x, E I be given. Then (3.21), (4.9), and 
(4.10) imply that there is a positive constant C, independent of n and the selection of 
x1,. . ,xnE I, such that 

(4.11) r(6n, S 5 C Z 

for any z E ker 69n n 6:0. 
We now define a function z E ker 6-Xn n6 0 which gives the desired result. Let x0 

and xn+I denote the left and right endpoints of I, and assume without loss of 
generality that xI < x2 < ... < xn. Define 

(4.12) hi xi+ 1 -xi (0 < i < n) 

and 

(4.13) p1 : (xi + x1+l) (0 < i < n). 

Define z on I by 

(2ho)r, X < X PO 

('h )rX (X -Pi p x x<+1, O < i?n-1, 

(4.14) z(x) := 
|('h+, 

r 
Xpi - x, x < p,, < i < n-1, 

(2~r lh x?xn+I 

(2 n)h Pn < X X n + 

where 

(4.15) x( ) -I (2r 1)! f [z(1.z)]rIdZ. 
[(r - 1)!q 

One may verify that 

(x(O) = 1,5 X(l) = 0, 

{x()(O) 
= X(J)(1) 

0 
O (1 

?j 
< r - 

1), (4.16) 
'X(Y) < ? for0< y < 1, 

X(Y) > ? for 0 < y < 1, 

and so x E Cr- ([0, 1]) and 

(4.17) f'X(y) dy > 0. 

Since z is piecewise polynomial and globally Cr-1, z E Hr(I). A straightforward 
computation yields 

(4.18) IIIIr < a { [? (I2l) 2 J] 1/ 

where 

(4.19) f'x(')(y) dy. 
0i 
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Note that a is a fixed positive constant, independent of n and the choice of 
xI, .x-n E L. Now define 

(4.20) z(x) z(x)/a. 
Since z vanishes at xl,.. ,xXn and (4.18) holds, we have z E ker X,n n fl%. 

Another computation yields 

(421 a (I+J) 2 h a 
+ 

- a 2 hi) a ( 2 hn) 
(4.21) n+1 

A hr+I, 
i=O 

where 

(4.22) A min(I + ,a, 2,u). 
a2 r?I 

Since 
n+1 

(4.23) 2 hi =II, 
i=O 

one may use elementary calculus to show that 
n+ 

+I - 
I \r 

(4.24) + hi III 2 j . 
i=O 

Using (4.11), (4.21), and (4.24), there is an a > 0, independent of n and X Xn, 
such that 

(4.25) r(n S, 9 JO) > axn 

proving (i). The rest of the theorem follows from (i) and (4.7) with N = 1. 0 
Remark 4.1. In Section 6.4 of Part A, it is shown that the optimal error for using n 

evaluations in numerical quadrature is e(n-r), provided 60= {f E Hr(I): 

f (r) I < L2(I) . 1 } We are not able to make direct use of this fact, because we must 
use 60 = {f E Hr(I): 1' f llr < 1) in order to take advantage of the shift theorem 
(2.5). Similarly, the results of Sobolev [8] may be used to show that in N dimensions, 
the optimal error for using n evaluations in numerical quadrature is 0(n-r/N), 
provided 60 consists of all f E Hr(Q) whose Hr(Q2) seminorm is bounded by a fixed 
constant. In order to use the shift theorem (2.5), we must assume that the Hr(R) 
norm is bounded by a fixed constant. Of course, the two hypotheses are not 
interchangeable, since any element of r-l has Hr(Q) seminorm of zero; thus we 
cannot immediately use the results of Sobolev [8] to yield a lower bound of 
Q(-r/N) for quadrature (and thus, for the problem S) in N dimensions for general 
N. O 

Remark 4.2. Suppose %0 is the unit ball of C(Q2) under the sup norm. Since the 
information 69n f is well defined for any f E C(Q2), we wish to consider the optimal 
error behavior of algorithms p using (n in this case. Since 6Fo is not the unit ball of a 
Hilbert space, (3.21) is not guaranteed to hold. However, it is known that 

(4.26) infe(p) = c sup IISfI1, 
IV f c ker 9T,n C)o0 
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where c E [1, 2]; see Sections 2.2 and 2.3 of Part A. It is possible to show that 

(4.27) sup 11 Sf I1 = sup 11 Sf 111 K. 
fCker % nXFl0 f cE 

Since S #& 0, K is a positive constant, independent of n. Thus for any algorithm pgn 
using (Ln' we see that 

(4.28) K < e(q9) n 2K, 

no matter how large n is. So, the minimal condition for (Ln to be defined is not 
strong enough to yield an algorithm of error less than K. E 

Remark 4.3. Once again, we could consider adaptive standard information, in 
which xi depends on Xj and f(xj) for 1 ?j - i-1. However, for any adaptive 
standard information 9L, one can find nonadaptive standard information OL... of 
the same cardinality for which r(L ..., S, I3O) < r(9L, S, IFO); see Section 2.7 of Part 
A. So, adaptive information does not help. W 

From Theorems 3.1 and 4.1, we easily conclude 

COROLLARY 4.1. For N = 1, 

r('X**, S, 6Co) ?() O 
r(9X*, S, 6JY) 

This shows how much we lose by using the standard information (n** instead of 
the asymptotically optimal information (L*. The penalty goes to infinity with n. 

We now consider the computational complexity of using the finite element 
method with quadrature qn** to find an c-approximation to S, in the case N = 1. By 
(iii) of Theorem 4.1, to guarantee e( pn**) < c, we require 

(4.29) n-O(G-l/r) as -0. 

Again, Pn** is linear, i.e., there exist gi E Ho(Sl) such that 
n 

(4.30) Tn**((n**f) f(xi)gi. 
i=l1 

Let us agree to compute the gi in advance and not count the cost of this precomputa- 
tion. Assume that the evaluation of f has finite cost. We then find that the 
complexity of using the finite element method with quadrature to compute an 
--approximation is 

(4.31) COMP(p,n**, ) = (cI/r) as- 0. 

Since Tn** is a linear asymptotically optimal error algorithm using (19n, we see that 

(4.32) COMP**(S, e) inf COMP(9, e) = 0(E-1/r) as -*0, 

the infimum being taken over all qp using standard information and for which 

e(qp) - e. Thus qn** is of asymptotically optimal complexity using standard informa- 
tion 

Comparing (3.47) and (4.32), we find 

COROLLARY 4.2. If N = 1, 

COMP**(S,5) 11(( 2-) r 

COMP(S,e) / E ' 
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This is another measure of the penalty for using standard information. 
As in Section 3, we may wish to avoid the assumption of preconditioning. In this 

case, we once again have to solve a linear system involving a large sparse matrix. 
However, for the case N = 1, which we are considering, the linear system may once 
again be solved in linear time, so that the finite element method with quadrature 
remains an asymptotically optimal complexity algorithm. 
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